

Strategies for Managing Perishable Goods with Time Sensitive Demand in Inventory Control Models

* Badri Vishal Padamwar

Abstract: For any business operating with perishable items, mastering inventory control is not just an advantage but it's a necessity. This study explores into the evolving world of inventory frameworks that specifically account for fluctuating demand, shifting prices, and the inherent spoilage of products. By integrating findings from recent studies (2017-2025), it identifies practical methods for streamlining inventory, minimizing financial loss, and strengthening the entire supply chain. Core strategies like flexible pricing models, managed partial backorders, and accurate demand prediction emerge as vital tools. The findings offer a valuable guide for industry professionals and set the stage for further academic investigation.

Keywords: Inventory control, perishable goods, time-sensitive demand, adaptive pricing, partial backordering

Introduction

The efficacy of inventory models is a primary determinant of success for supply chains involving perishable items, such as food, medicine, and seasonal merchandise. While traditional models operate on a premise of steady demand, contemporary research acknowledges the necessity for strategies that accommodate demand variability and product degradation (Sharma, 2022). This paper consolidates insights from seminal studies to conduct a thorough examination of advanced inventory approaches. Guided by research on time-sensitive demand and pricing (Sharma, 2024), our analysis is structured around three pivotal topics: the impact of degradation rates on stock decisions, the role of price elasticity in shaping demand trends, and the application

of partial backordering to address stock shortages.

LITERATURE REVIEW

Inventory models for perishable goods represent a critical and complex challenge within supply chain and retail operations. Unlike non-perishable items, these goods are subject to deterioration or spoilage over time, necessitating specialized inventory control strategies that account for both physical loss and dynamic market forces. The existing literature reveals a significant evolution in this field, moving from foundational Economic Order Quantity (EOQ) models to sophisticated frameworks that integrate time, price sensitivity, and advanced technologies. Traditional inventory models, such as the Economic Order Quantity (EOQ), provide a

foundational starting point. However, their assumption of constant demand is often inadequate for perishables. As Sharma (2025a) notes in a comparative analysis, models that incorporate variable demand rates offer a more realistic and practical approach for items whose value and demand diminish over time. It is particularly true for perishable goods, where time is in-extricably linked to both consumer willingness to pay and product utility (Avinadav et al., 2013). These authors established a pivotal model demonstrating that the optimal policy for a perishable item must simultaneously account for a demand function that is sensitive to both price and the remaining shelf life.

Building on this, a substantial body of work, particularly from Sharma and colleagues, has extensively analyzed time-dependent demand patterns. Research has explored various shapes of demand, including trapezoidal (Sharma, 2015) and models accounting for partial backlogging (Sharma & Bansal, 2016). This stream of research underscores that a "onesize-fits-all" approach is ineffective; instead, inventory policies must be tailored to the specific demand decay pattern of the product. Bagh (2025) reinforces this by emphasizing the need for strategic inventory control specifically designed for deteriorating products facing time-sensitive demand, a concept further explored in the context of price

changes over a product's life cycle (Sharma et al., 2023; Sharma, 2024).

The complexity of managing perishables is further amplified in multi-product or multicustomer scenarios. Abouee-Mehrizi et al. (2019) addressed this by developing models for managing perishable inventory with multiple priority classes, a crucial strategy for sectors like healthcare or aviation where different customer segments have varying urgencies. This highlights a shift from optimizing a single stock-keeping unit (SKU) to managing an entire portfolio of perishable assets. In a planned economy context, Riazi et al. (2024) argue that integrating inventory control directly into the sales process is key to profitability, suggesting that operational strategy must be aligned with broader economic structures.

Recent research trends point towards greater integration and technological adoption. The use of hybrid multi-criteria decision-making (MCDM) methodologies, as proposed by Sharma et al. (2025b), allows for a more holistic improvement of sustainability in manufacturing, where inventory waste is a key concern. Furthermore, simulation-optimization approaches are being advocated to test and refine production control strategies in complex perishable food supply chains, offering a dynamic tool for decision-making under uncertainty (Gailan Qasem et al., 2023).

While not always implemented, the potential of technology like Time-Temperature Integrators (TTIs) to provide real-time shelf-life data has been identified as a future direction for enhancing perishable inventory management (Kouki, 2010).

The literature explores a clear trajectory in the study of perishable inventory management. The field has progressed from adapting basic EOQ models to developing highly specialized, integrated strategies. Future research, as indicated by earlier publications, will likely continue to leverage advanced analytical methods, simulation, and emerging technologies to further minimize waste, optimize profitability, and improve the sustainability of managing perishable goods.

METHODOLOGY

This study adopts a qualitative research design, centered on a systematic review of peer-reviewed literature published by Sharma and colleagues between 2015 and 2024. The objective is to identify prevailing trends, methodological patterns, and evolving strategies within the field of perishable inventory modeling. The research process was structured into three sequential phases to ensure a comprehensive and credible analysis.

Phase I: Systematic Literature Collection

The foundation of this research was built through a targeted gathering of relevant academic works. The selection process involved:

- a) Querying digital libraries using a defined set
 of keywords, including "perishable inventory," "time-sensitive demand,"
 "deteriorating items," and "adaptive pricing."
- b) Applying a quality filter by considering only articles published in reputable, indexed journals to uphold the academic integrity and reliability of the sources.

Phase II: Thematic and Comparative Analysis

The selected literature was then subjected to a detailed comparative evaluation. This phase involved:

- 1. Categorization of Models: Frameworks were systematically classified based on their core assumptions, primarily by the type of product degradation (e.g., constant, linear, or exponential) and the structure of demand (e.g., uniform, trapezoidal, or seasonal).
- Evaluation of Key Parameters: A crosscomparison was conducted to assess how different models handle critical variables such as holding costs, stockout conditions, and partial backordering rates.

Phase III: Synthesis and Gap Identification

The final phase focused on synthesizing the findings to draw meaningful conclusions and outline future research directions. This included:

- a) Distilling Effective Practices: Consolidating successful strategies identified across the literature, such as optimal replenishment cycles and dynamic pricing tactics.
- b) **Identifying Research Gaps:** Pinpointing limitations in existing models, for instance, the frequent reliance on simplified assumptions like uniform degradation rates, which present opportunities for further investigation.

This structured, three-stage methodology facilitates a robust and evidence-based analysis of inventory optimization techniques for perishable goods.

FINDINGS AND DISCUSSION

The analysis of the literature reveals a clear evolution in perishable inventory management, moving from static models to dynamic frameworks that integrate time, price, and deterioration. A central finding is that assuming constant demand or degradation, as in traditional EOQ models, is fundamentally inadequate for perishables (Sharma, 2025a). Instead, success hinges on aligning inventory policy with the specific nature of demand decay, whether it follows a trapezoidal (Sharma, 2015) or time-sensitive pattern (Bagh, 2025).

The discussion therefore centers on the critical interplay of key variables. First, the rate of product degradation directly dictates the optimal replenishment cycle, requiring more frequent, smaller orders for highly perishable

items to minimize spoilage. Second, demand is not static but is significantly shaped by strategic pricing. As Avinadav et al. (2013) demonstrated, dynamic pricing strategies that reflect diminishing product utility over time are essential for maximizing revenue and clearing inventory. Furthermore, the practice of partial backordering emerges as a vital tactic to balance the costs of stockouts against the costs of holding perishable stock (Sharma & Bansal, 2016).

However. the research also identifies persistent gaps. Many models rely on simplified assumptions, such as uniform degradation rates, which do not reflect the reality of many products (Kouki, 2010). Future research should focus on integrating real-time data, perhaps through technologies like Time-Temperature Integrators, to create more adaptive and responsive inventory systems. Ultimately, the most effective strategies are those that holistically synchronize pricing, ordering, and demand forecasting with the relentless clock of perishability.

CONCLUSION AND FUTURE DIRECTIONS

This synthesis of a decade of research underscores a critical paradigm shift in inventory management for perishable goods: moving from rigid, static models to flexible, data-driven frameworks is not merely beneficial but essential for supply chain

resilience and profitability. The evidence conclusively demonstrates that traditional, one-size-fits-all stock systems are fundamentally inadequate for addressing the inherent challenges of product deterioration and volatile demand.

The analysis has yielded several actionable strategies for practitioners. Firstly, the adoption of adaptive pricing, where prices are dynamically aligned with shelf-life and market conditions, has been shown to reduce waste and optimize revenue effectively (Sharma, 2024; Sharma et al., 2023). Secondly, implementing partial backordering systems provides a pragmatic solution to stockouts, strategically balancing customer service levels with the prohibitive costs of storing perishables (Sharma & Bansal, 2016). employing demand-adaptive Finally, restocking models, such as those that account for trapezoidal demand patterns, enables precise alignment of inventory with the sales cycles of seasonal products (Sharma, 2015). Despite these advancements, the field is not without its limitations. A reliance theoretical assumptions and a need for more real-world extensive validation present significant opportunities for future research. Subsequent should studies prioritize integrating AI-enhanced forecasting to demand improve prediction accuracy, develop sustainability metrics to evaluate the

environmental impact of inventory decisions, and conduct industry-specific case studies in critical sectors such as pharmaceuticals and agriculture. In an era of growing supply chain uncertainty, the transition from uniform stock systems to intelligent, responsive models is the definitive key to achieving competitive advantage and operational excellence in the management of perishable goods.

References

- Riazi, H., Doroodian, M., & Afshar-Nadjafi, B. (2024). Improving the sales process of profitable perishable goods: an inventory control strategy in a planned economy. International Journal of Retail & Distribution Management, 52(6), 721-735.
- 2. Avinadav, T., Herbon, A., & Spiegel, U. (2013). Optimal inventory policy for a perishable item with demand function sensitive to price and time. International Journal of Production Economics, 144(2), 497-506.
- 3. Sharma (2025). A Comparative Analysis of Inventory Models: Evaluating the Economic Order Quantity (EOQ) Model with Constant Demand versus Variable Demand Rates. Journal of Ravishankar University (Part-B: Science), 38(1), pp. 61-66.
- DOI: https://doi.org/10.52228/JRUB.2025-38-1-4

- Sharma, A. K., Aravindan, N., Ignatia, K. M. J., Areche, F. O., Loganathan, G. B., Taha, A. H. & Yellapragada, R. K. (2025). Hybrid multi criteria decision making methodology for improving sustainability of the manufacturing sector. International Journal on Interactive Design and Manufacturing (IJIDeM), 19(2), 695-704.
- Sharma, A. K. (2025). Inventory Management Through Mathematical Optimization: An Overview and analysis. Today's Multidisciplinary Research Perspectives (Vol. 8, pp. 8–13). Authors Click Publishing, India.
- 7. Bagh, T. C. (2025). Strategic Inventory Control for Deteriorating Products under Time-Sensitive Demand. *International Journal of Multidisciplinary Research and Explorer*, 5(2), 39-43.
- 8. Kouki, C. (2010). Perishable items
 Inventory Mnagement and the Use of Time
 Temperature Integrators
 Technology (Doctoral dissertation, Ecole
 Centrale Paris).
- Sharma, A. K. (2024). Time-Dependent Demand and Price Effects on Inventory Models: An Analytical Study. Asian Journal For Convergence In Technology (AJCT) ISSN -2350-1146, 10(3), 1-3. https://doi.org/10.33130/AJCT.2024v10i03.001

- 10. Sharma, A. K., Adil, A. K., & Dubey, S. S. (2023). Overview of advancement of inventory models for deteriorating items with time based uniform price. International Journal of Innovative Research in Engineering, 4(1), 14–18.
- 11. Sharma, A. K. (Ed.). (2023). Recent Innovative Trends in Interdisciplinary Research Areas Vol. 1. Animesh Kumar Sharma.
- 12. Sharma, A. K. (Ed.). (2023). Recent Innovative Trends in Interdisciplinary Research Areas Vol. 2. Animesh Kumar Sharma.
- 13. Abouee-Mehrizi, H., Baron, O., Berman, O., & Chen, D. (2019). Managing perishable inventory systems with multiple priority classes. *Production and Operations Management*, 28(9), 2305-2322.
- 14. Sharma, A. K. (2022). The need for an inventory control system. *IUP Journal of Operations Management*, 21(1), 59-63.
- 15. Sharma, A. K. (2015). Analysis of deteriorating inventory for model trapezoidal type demand rate. *International* Journal of . Engineering Research & Management Technology, 2(6), 151-159.

- 16. Sharma, A. K., & Bansal, K. K. (2016). Analysis of inventory model with time dependent demand under fractional backlogging. *International Journal of Education and Science Research Review*, 3(1), 103–111.
- 17. Gailan Qasem, A., Aqlan, F., Shamsan, A., & Alhendi, M. (2023). A simulation-optimisation approach for production control strategies in perishable food supply chains. *Journal of Simulation*, *17*(2), 211-227.
- 18. Sharma, A. K. (2020). Inventory model for fixed deterioration within vending price order rate using limited backlogging. *International Journal of Innovative Research in Technology*, 6(9), 1–3.
- 19. Sharma, A. K. (2022). Survey of development of inventory models with time-based uniform demand.

- In Innovation of multidisciplinary research in present and future time (pp. 76–81). Insta Publishing India.
- 20. Sharma, A. K. (2019). An overview and study on inventory model with deteriorating items. *International Journal of Scientific Research in Engineering and Management*, 3(10), 1–5.
- 21. Sharma, A. K. (2019). On some inventory model with deteriorating objects. *International Journal for Scientific Research and Development*, 7(8), 377–380.
- 22. Sharma, A. K. (2019). Study to overview on inventory management and related models. *International Journal of Multidisciplinary Educational Research*, 8(11)(2), 77–86.

*Corresponding Author: Badri Vishal Padamwar

E-mail: padamwarbv@gmail.com

Received: 04 September, 2025; Accepted: 22 October, 2025. Available online: 30 October, 2025

Published by SAFE. (Society for Academic Facilitation and Extension)

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License