



## Effects of Artificial Intelligence on Environment

Dr. Sangeeta Govindrao Avachar \*

Associate Professor & HoD, English,  
 L.S.K.J. Mahila Mahavidyalaya, Parbhani,  
 Maharashtra (India)

### **Abstract:**

*As the term suggests, Artificial Intelligence (AI) is genuinely artificial. However, one cannot deny that it has drastically transformed the methods of computing data, optimizing systems, and brought innovations in almost all the fields of life by making it easier for the human societies. In spite of its prudent societal advantages, AI gives rise to critically consequential environmental confrontations and probabilities. Some of the glaring issues constitute high energy requirements and water consumption, mounting carbon emissions from data centers and hardware lifecycles, natural resources degeneration and e-waste formation. Contrarily, AI possesses the power to optimize energy systems, decrease emissions, augment renewable deployment and ensure environmental monitoring. This research endeavour facilitates an extensive peeping in the environmental impacts of AI, amalgamating pragmatic evidence from cross-disciplinary research and highlighting policy implications for sustainable development using AI.*

**Keywords:** Artificial Intelligence, Consumption, Effect, Energy, Environment.

**Received:** 11 December 2025

**Accepted:** 24 January 2026

**Published:** 30 January 2026

**\*Corresponding Author:**

**Dr. Sangeeta Govindrao Avachar**

Email: [sgavachar.1976@gmail.com](mailto:sgavachar.1976@gmail.com)

## Introduction

On one hand, Artificial Intelligence keeps growing as an ultramodern technology that validates machines to emulate syllogistic tasks, and has exponentially grown over the last decade. AI technologies have encompassed machine learning algorithms and large language models alike triggering implementations in climate change, agriculture, healthcare, transportation, finance and many more. The societal and monetary effects of AI are getting spread rampantly, nonetheless, its ecological entanglements are progressively pertinent as AI becomes intensively predominant. On the other hand, environmental sustainability poses itself at center to global development agendas such as the United Nations Sustainable Development Goals (SDGs), with special mentions to SDG 7 demarcating Affordable and Clean Energy, SDG 9 defining Industry, Innovation, and Infrastructure, and SDG 13 determining Climate Action. The appraisal of AI's contribution or mitigation towards

environmental stress is subjected to interpretation for synthesizing high-tech developments with sustainability objectives. The present research explores unconstructive environmental impacts and constructive prospective of Artificial Intelligence to compel environmental advancements.

Ecological consequences of Artificial Intelligence rudiment with the help of numerous techniques as the functioning of Artificial Intelligence technology involves and is liable to energy utilization, greenhouse gas emissions, natural resources reduction, water use, and electronic waste generation. Vanguard models of AI technology entail extensively reckoning resources for apprenticeship and assumption. Modern deep learning AI model for training demands dependency over gigantic datasets with exceptional hardware that lasts for weeks or months together. Conforming to ecological implications, working out with tremendously powerful models can devour energy analogous to the yearly electricity

consumption of approximately a town or pretty considerable population that may lead to considerable carbon emissions when powered by fossil fuels. Analytical studies have admitted that data centers hosting AI missions by now are swallowing distinctive share of global electricity. A director at the Grantham Research Institute on Climate Change and Environment, a research institute at the London School of Economics and Political Science established in 2008, notes that saleable deduction of Artificial Intelligence comprises eighty to ninety percent of estimating consignment thereby baffling the exact potential power as a result of proprietary methods. Current exploratory studies convey that the explosion of Artificial Intelligence implementation during the year 2025 might have caused carbon emissions equating the share of any metro city at the stake of enormous reservoirs of cooling water joining hands with some foremost manufacturing industries. The core physical infrastructure essential for AI functioning such as Graphics Processing Units, Tensor Processing Units, servers, memory hardware and so forth unavoidably hinges mining of metals, infrequent earth elements, and bulky water reservoirs. Extracting these valuable refineries is definitely responsible for habitat distraction, water contamination, and air pollution. Nowadays, even today's innovative technology becomes old tomorrow due to hasty modernization revolution. As a consequence, AI hardware frequently turns outdated within shortest time span thereby falling a prey to the all-embracing tendency of e-waste generation. E-waste cascades enclose deadly harmful materials such as lead and mercury affecting soil and water purity raising pollution jeopardy if it remains non-recycled and ignored. Water is immensely important for cooling data centers. It has only added to the existing industry demands of water for thermal management system. Several exploratory studies put forward that the water usage levels necessitated for AI cooling at present exceeded requirements with bottled water sector utilization worldwide. Modern literature studies underline the magnitude of assessing AI's cradle-to-grave environmental whereabouts. Lifecycle judgments divulge that emanations are not restricted to equipped power consumption but they comprise outpourings implanted in product making, allocation and discarding of focused accelerators. Compute carbon intensity drives assist in enumerating comparative coherence of consecutive hardware generations. Along with straightforward natural resource utilization, AI can elicit roundabout

repercussions. For example, optimization algorithms enhancing logistics might condense emissions per consignment but could also cause elevated and increased consumption called as a rebound effect. In transportation, AI-promoted ride-hailing amenities may augment vehicle miles traveled, offsetting gains from more competent routing. While less studied than the direct impacts, these secondary phenomena are essential in comprehensive environmental modeling.

Due to excessive implementations of AI, threats to environmental wellbeing do exist and mount, however, its capability to trigger sustainable natural environmental is also significant. In this second half of the research, it will be focused how AI can condense emissions, make possible energy transitions and support ecological preservation. AI algorithms are widely helpful to recover the effectiveness of power systems by forecasting energy need, enhancing load competency and decreasing waste creation. AI accelerated power administration arrangements accomplish momentous power savings and decrease in exhalation throughout industry-based implementations. AI interventions significantly improved energy efficiency in most sectors and reduced emissions in many cases according to a study of energy management projects. Additionally, well-groomed grid usages manipulate AI to forecast renewable production and administer exact peaks as a part of crucial functionality for integrating alternating sources such as wind and solar. Cross-country pragmatic investigation locates that upper level of AI expansion keeps in touch with modest but statistically significant reductions in ecological footprints and carbon emissions while promoting energy transition dynamics. Explicitly, one percent rise in AI growth is connected with declines in ecological footprint and carbon emissions and the triggering of power conversion. AI implementations that improve energy accomplishments are capable of lowering carbon concentration in metropolitan and manufacturing situations. For example, AI is being utilized to amplify power utilization configurations and encourage green metamorphosis in urban areas, thereby amplifying environmental decorum. Optimized AI consumption across important financial sectors such as electricity, transportation, agriculture etc. could lead to gigaton-scale depletions in greenhouse gas emissions by 2035 as per business-as-usual trajectories has been propounded according to an integrated assessment. Proficient travel

supervision, enhanced solar and wind power forecasting and sharp resource provision are a few instances of high-impact interferences. AI can support in sitting renewable infrastructure, accelerating innovation cycles, and notifying concealed geothermal or wind energy projects facilitating a transition to cleaner energy systems. Real-world enterprises have confirmed bettered traffic flows, building energy savings and optimized Electric Vehicle charging schedules through AI automated applications.

After reviewing AI's environmental impact, the need for effective governance strategies is obviously felt. AI technologies would display intelligibility in the utilization of energy, carbon emissions, and implementation of water usage connected with AI operations. It should be accepted as one of the indispensable benchmark for accountability. Unvarying exposure structures analogous to monetary revelations would permit juxtapositions across providers and models. Governments and international organizations should motivate energy efficient AI hardware, carbon emission literate AI training etiquettes and upgraded data center design. AI's footprint will be mitigated by inexhaustible energy acquisition and advocacy for less carbon emission electricity framework. Ecological effect appraisals must expand further than operational emissions to comprise product making, allocation, and disposal of AI hardware. Adopting cradle-to-grave AI analyses, enables inclusive estimation of sustainability trade-offs and guides investment decisions. AI systems must be administered in ways that reflect on environmental justice. Bumpy deployment of data centers and linked pollution burdens can aggravate discriminations, predominantly in underprivileged populations. Policies should make certain just allocation of environmental expenses and settlements.

Environmental impact of AI cannot be put in a nutshell through a sole description of destruction or advantage. Straightforwardly, environmental footprint of AI is non-trivial, determined by high energy consumption and resource use. Nevertheless, AI also holds ground breaking energy to constrain sustainable enlargement if aligned with the accurate guiding principles and technology abundance.

The balance between harm and good effects of AI depends on several factors such as energy sourcing enabling AI's carbon footprint to remain lower when powered by renewable electricity, model efficiency kept

smaller by practising efficient models and hardware accelerators to reduce energy demand, application domain AI applied to environmental optimization yielding benefits that may offset its costs and governance framework standardized metrics and regulations shaping sustainable AI innovation trajectories.

The environmental whereabouts of artificial intelligence are multifarious and comprehensive. On one side, AI's infrastructure and compute demands add materially to greenhouse gas emissions, resource extraction, e-waste generation and water usage. On the other side, AI has confirmed the power to augment power systems, speed up emission reductions and maintain energy transition. Future research should prioritize quantifying AI's environmental footprint across lifecycles, mechanism design for sustainable AI governance, and comparative analyses across sectors and regions. AI persists to silhouette the overall economy lining up its expansion with ecological sustainability goals as crucial for making certain that technological progress does not come at the expense of planetary health.

## References

1. Kumar, N., Ghosh, A., & Choudhary, P. (2025). *Does Artificial Intelligence Contribute To Carbon Emission?* International Journal of Environmental Sciences.
2. Institute for Environmental Research and Education. (2024). *How does AI impact the environment?*
3. Wang, Q., Li, Y., & Li, R. (2024). *Ecological footprints, carbon emissions, and energy transitions: the impact of artificial intelligence (AI).* Humanities and Social Sciences Communications.
4. MDPI (2025). *The role of AI in improving environmental sustainability via energy management.*
5. Grantham Research Institute. (2025). *Direct risks AI poses to climate and environment.*
6. Nature Scientific Reports (2025). *AI's influence on industrial carbon emission intensity.*
7. ScienceDirect (2025). *AI's impact on urban energy environmental performance.*

8. Nature publication (2025). *AI and sectoral global emissions reduction potentials.*
9. Desroches, C., et al. (2025). *Exploring the sustainable scaling of AI dilemma.*
10. Schneider, I., et al. (2025). *Life-Cycle Emissions of AI Hardware.*