Effects of Soil Microplastics on Plant Growth and Soil Health
Main Article Content
Abstract
Microplastics (MPs; <5 mm) are emerging contaminants in terrestrial ecosystems, yet their effects on soil health and plant growth remain poorly understood. This study investigates the impact of polyethylene (PE) and polypropylene (PP) microplastics on soil properties, microbial activity, and the growth of Lactuca sativa (lettuce). Soil was artificially contaminated with MPs at concentrations of 0.5%, 1%, and 2% (w/w). After a 60-day greenhouse experiment, MP-treated soils showed reduced water retention (−15–20%) and microbial biomass (−25%). Lettuce grown in MP-contaminated soil exhibited stunted root growth (−30%) and decreased biomass (−22%). These findings highlight the need for sustainable agricultural practices to mitigate microplastic pollution
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
De Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Becker, R., Görlich, A. S., & Rillig, M. C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53(10), 6044-6052. https://doi.org/10.1021/acs.est.9b01339
De Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Becker, R., Görlich, A. S., & Rillig, M. C. (2022). Microplastics can change soil properties and affect plant performance: An updated review. Environmental Science & Technology, 56(5), 2345-2356. https://doi.org/10.1021/acs.est.1c04795
Gao, M., Liu, Y., Dong, Y., & Song, Z. (2023). Mechanical impedance by microplastics restricts root growth: Evidence from maize (Zea mays L.) seedlings. Plant and Soil, 482(1-2), 617-631. https://doi.org/10.1007/s11104-022-05711-y
Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127-141. https://doi.org/10.1016/j.scitotenv.2017.01.190
Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., & Klobučar, G. (2023). Ecotoxicity and genotoxicity of polystyrene microplastics on terrestrial plants and soil organisms. Journal of Hazardous Materials, 445, 130523. https://doi.org/10.1016/j.jhazmat.2022.130523
Kumar, R., Sharma, P., Manna, C., & Jain, M. (2023). Microplastic pollution exacerbates water stress in arid zone soils. Science of the Total Environment, 857(Pt 1), 159312.https://doi.org/10.1016/j.scitotenv.2022.159312
Lehmann, A., Fitschen, K., & Rillig, M. C. (2022). Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil & Tillage Research, 220, 105359.
Li, B., Huang, S., Wang, H., Liu, M., Xue, S., & Tang, D. (2023). Effects of microplastics on higher plants: A review. Bulletin of Environmental Contamination and Toxicology, 110(1), 14.
Mahon, A. M., O'Connell, B., Healy, M. G., O'Connor, I., Officer, R., Nash, R., & Morrison, L. (2017). Microplastics in sewage sludge: Effects of treatment. Environmental Science & Technology, 51(2), 810-818. https://doi.org/10.1021/acs.est.6b04048
Plastics Europe. (2022). Plastics - the Facts 2022: An analysis of European plastics production, demand and waste data. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/
Qi, Y., Yang, X., Pelaez, A. M., Huerta Lwanga, E., Beriot, N., Gertsen, H., Garbeva, P., & Geissen, V. (2020). Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645, 1048-1056. https://doi.org/10.1016/j.scitotenv.2018.07.229
Rillig, M. C., Leifheit, E., & Lehmann, J. (2021). Microplastic effects on carbon cycling processes in soils. PLoS Biology, 19(3), e3001130. https://doi.org/10.1371/journal.pbio.3001130
Seeley, M. E., Song, B., Passie, R., & Hale, R. C. (2020). Microplastics affect sedimentary microbial communities and nitrogen cycling. Nature Communications, 11(1), 2372. https://doi.org/10.1038/s41467-020-16235-3
Wang, F., Zhang, X., Zhang, S., Zhang, S., & Sun, Y. (2022). Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere, 254, 126791. https://doi.org/10.1016/j.chemosphere.2020.126791
Wang, F., Wang, Q., Adams, C. A., Sun, Y., & Zhang, S. (2023). Effects of microplastics on soil nutrient cycling: The role of particle size and chemical composition. Journal of Hazardous Materials, 445, 130481. https://doi.org/10.1016/j.jhazmat.2022.130481
Weithmann, N., Möller, J. N., Löder, M. G., Piehl, S., Laforsch, C., & Freitag, R. (2018). Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances, 4(4), eaap8060. https://doi.org/10.1126/sciadv.aap8060
Yang, X., Bento, C. P., Chen, H., Zhang, Q., Xue, S., Lwanga, E. H., & Geissen, V. (2023). Influence of microplastic addition on nutrient dynamics in soil-plant systems under different fertilization regimes. Agriculture, Ecosystems & Environment, 342, 108231. https://doi.org/10.1016/j.agee.2022.108231
Zhang, G. S., Zhang, F. X., & Li, X. T. (2022). Effects of microplastics on soil properties: Current knowledge and future perspectives. Journal of Hazardous Materials, 424(Pt A), 127531. https://doi.org/10.1016/j.jhazmat.2021.127531
Zhu, D., Ma, J., Li, G., Rillig, M. C., & Zhu, Y.-G. (2022). Soil plastisphere: Microbial habitat and nutrient cycling bottleneck in terrestrial ecosystems. Nature Reviews Earth & Environment, 3(8), 573-583. https://doi.org/10.1038/s43017-022-00322-8